منابع مشابه
Branches in random recursive k-ary trees
In this paper, using generalized {polya} urn models we find the expected value of the size of a branch in recursive $k$-ary trees. We also find the expectation of the number of nodes of a given outdegree in a branch of such trees.
متن کاملDegrees in $k$-minimal label random recursive trees
This article describes the limiting distribution of the degrees of nodes has been derived for a kind of random tree named k-minimal label random recursive tree, as the size of the tree goes to infinity. The outdegree of the tree is equal to the number of customers in a pyramid marketing agency immediatly alluring
متن کاملbranches in random recursive k-ary trees
in this paper, using generalized {polya} urn models we find the expected value of the size of a branch in recursive $k$-ary trees. we also find the expectation of the number of nodes of a given outdegree in a branch of such trees.
متن کاملTotal Path Length For Random Recursive Trees
Total path length, or search cost, for a rooted tree is defined as the sum of all root-to-node distances. Let Tn be the total path length for a random recursive tree of order n. Mahmoud (1991) showed that Wn := (Tn − E[Tn])/n converges almost surely and in L2 to a nondegenerate limiting random variable W . Here we give recurrence relations for the moments of Wn and of W and show that Wn converg...
متن کاملAsymptotic degree distribution in random recursive trees
The distributions of vertex degrees in random recursive trees and random plane recursive trees are shown to be asymptotically normal. Formulas are given for the asymptotic variances and covariances of the number of vertices with given outdegrees. We also give functional limit theorems for the evolution as vertices are added. The proofs use some old and new results about generalized Pólya urn mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistics & Probability Letters
سال: 2021
ISSN: 0167-7152
DOI: 10.1016/j.spl.2021.109061